Non-Linear Water Wave Equation Time Series Formulated Using Velocity Equation as the Result of Laplace Equation
نویسندگان
چکیده
منابع مشابه
Differential Transform Method to two-dimensional non-linear wave equation
In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملWave-equation Migration Velocity Analysis
In this report, we introduce a new wave-equation method of migration velocity analysis (MVA). The method is based on the linear relation that can be established between a perturbation in the migrated image and the generating perturbation in the slowness function. Our method consists of two steps: we first improve the focusing of the migrated image and then iteratively update the velocity model ...
متن کاملNumerical solution of the wave equation using shearlet frames
In this paper, using shearlet frames, we present a numerical method for solving the wave equation. We define a new shearlet system and by the Plancherel theorem, we calculate the shearlet coefficients.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering Research and Applications
سال: 2017
ISSN: 2248-9622,2248-9622
DOI: 10.9790/9622-0706033745