Non-linear new product A*B-B*A derivations on *-algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Product of derivations on C$^*$-algebras

Let $mathfrak{A}$ be an algebra. A linear mapping $delta:mathfrak{A}tomathfrak{A}$ is called a textit{derivation} if $delta(ab)=delta(a)b+adelta(b)$ for each $a,binmathfrak{A}$. Given two derivations $delta$ and $delta'$ on a $C^*$-algebra $mathfrak A$, we prove that there exists a derivation $Delta$ on $mathfrak A$ such that $deltadelta'=Delta^2$ if and only if either $delta'=0$ or $delta=sdel...

متن کامل

product of derivations on c$^*$-algebras

let $mathfrak{a}$ be an algebra. a linear mapping $delta:mathfrak{a}tomathfrak{a}$ is called a textit{derivation} if $delta(ab)=delta(a)b+adelta(b)$ for each $a,binmathfrak{a}$. given two derivations $delta$ and $delta'$ on a $c^*$-algebra $mathfrak a$, we prove that there exists a derivation $delta$ on $mathfrak a$ such that $deltadelta'=delta^2$ if and only if either $delta'=0$...

متن کامل

Derivations of Tensor Product of Algebras

We establish several results regarding the algebra of derivations of tensor product of two algebras, and its connection to finite order automorphisms. These results generalize some well-know theorems in the literature. Dedicated to Professor Bruce Allison on the occasion of his sixtieth birthday 0. Introduction In 1969, R. E. Block [B] showed that the algebra of derivations of tensor product of...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 2020

ISSN: 0717-6279

DOI: 10.22199/issn.0717-6279-2020-02-0029