Non-isothermal crystallization kinetics and thermal behaviour of PA12/SEBS-g-MA blends
نویسندگان
چکیده
منابع مشابه
Non-isothermal Primary Crystallization Kinetics of the Amorphous Fe85.3B11P3Cu0.7 Alloy
In the present research, the primary crystallization kinetics of the amorphous Fe85.3B11P3Cu0.7 alloy was analyzed using non-isothermal DSC measurements. The average and local activation energies, Ea, were determined by different isokinetic and isoconversional methods. The results obtained for activation energy in this research, show that due to the complexity of the primary crystallization pro...
متن کاملStudy of Non-Isothermal Crystallization Kinetics of Biodegradable Poly(ethylene adipate)/SiO2 Nanocomposites
Poly(ethylene adipte) and poly(ethylene adipate)/silica nanocomposite (PEAd/SiO2) containing 3 wt. % SiO2 were prepared by an in situ method. The examinations on the non-isothermal crystallization kinetic behavior have been conducted by means of differential scanning calorimeter (DSC). The Avrami, Ozawa, and combined Avrami and Ozawa equations were applied to describe the crystallization kinet...
متن کاملIsothermal crystallization kinetics of poly(ethylene terephthalate) and poly(methyl methacrylate) blends
Different kinetic models like the Avrami, Tobin and Urbanovici-Segal models have been applied for determining the isothermal crystallization kinetics of virgin poly(ethylene terephthalate) (PET) and PET/poly(methyl methacrylate) (PMMA) blends. The different compositions investigated were PET90/PMMA10, PET75/PMMA25 and PET50/PMMA50 [wt/wt%]. The experimental data was fitted using Solver, a non-l...
متن کاملNon-isothermal Crystallization Kinetics of Linear Metallocene Polyethylenes
The effect of Mw on the non-isothermal crystallization kinetics of metallocene linear polyethylene (m-PE) was studied using modulated differential scanning calorimetry. Six linear m-PEs of molecular weights in the range 122-934 kg/mol were prepared by gas phase polymerization. The cooling rate was varied in the range 2–20C/min and it has significantly affected the crystallization behavior. The ...
متن کاملIsothermal and Non-isothermal Crystallization Kinetics of Poly(L-Lactide)/Carbonated Hydroxyapatite Nanocomposite Microspheres
Medical-profession-accepted and the US Food and Drug Administration (FDA)-approved biodegradable polymers have been used for tissue engineering applications over the last two decades due to their good biocompatibility and acceptable biodegradation properties. Poly(L-lactide) (PLLA) is a linear aliphatic biodegradable polymer and has been widely studied for use as a scaffolding material for huma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Materials Science
سال: 2015
ISSN: 0250-4707,0973-7669
DOI: 10.1007/s12034-015-1016-7