Non-hamiltonian 54-tough maximal planar graphs
نویسندگان
چکیده
منابع مشابه
An update on non-Hamiltonian 54-tough maximal planar graphs
Studying the shortness of longest cycles in maximal planar graphs, we improve the upper bound on the shortness exponent of the class of 54 -tough maximal planar graphs presented by Harant and Owens [Discrete Math. 147 (1995), 301–305]. In addition, we present two generalizations of a similar result of Tkáč who considered 1-tough maximal planar graphs [Discrete Math. 154 (1996), 321–328]; we rem...
متن کاملA linear algorithm for finding Hamiltonian cycles in 4-connected maximal planar graphs
The Hamiltonian cycle problem is one of the most popular NP-complete problems, and remains NP-complete even if we restrict ourselves to a class of (3-connected cubic) planar graphs [5,9]. Therefore, there seems to be no polynomial-time algorithm for the Hamiltonian cycle problem. However, for certain (nontrivial) classes of restricted graphs, there exist polynomial-time algorithms [3,4,6]. In f...
متن کاملAn approximation algorithm for the hamiltonian walk problem on maximal planar graphs
A hamiltonian walk of a graph is a shortest closed walk that passes through every vertex at least once, and the length is the total number of traversed edges. The hamiltonian walk problem in which one would like to find a hamiltonian walk of a given graph is NP-complete. The problem is a generalized hamiltonian cycle problem and is a special case of the traveling salesman problem. Employing the...
متن کاملOn k-path Hamiltonian planar graphs
We give a simple upper bound on k for k-path-hamiltonianness of a graph. Also given are exact values for maximal planar graphs. UN/VERSJTY LIBRARIES CARNEGIE-MELLON UNIVERSITY PITTSBURGH, PENNSYLVANIA 15213
متن کاملHamiltonian Paths and Cycles in Planar Graphs
We examine the problem of counting the number of Hamiltonian paths and Hamiltonian cycles in outerplanar graphs and planar graphs, respectively. We give an O(nαn) upper bound and an Ω(αn) lower bound on the maximum number of Hamiltonian paths in an outerplanar graph with n vertices, where α ≈ 1.46557 is the unique real root of α = α + 1. For any positive integer n ≥ 6, we define an outerplanar ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1995
ISSN: 0012-365X
DOI: 10.1016/0012-365x(94)00177-k