Non-Gaussianity Detection of EEG Signals Based on a Multivariate Scale Mixture Model for Diagnosis of Epileptic Seizures

نویسندگان

چکیده

Objective: The detection of epileptic seizures from scalp electroencephalogram (EEG) signals can facilitate early diagnosis and treatment. Previous studies suggested that the Gaussianity EEG distributions changes depending on presence or absence seizures; however, no general signal models explain such in within a unified scheme. Methods: This paper describes formulation stochastic model based multivariate scale mixture distribution represent non-Gaussianity caused by fluctuations EEG. In addition, we propose an analysis method combining with filter bank introduce feature representing latent each frequency band. Results: We applied proposed to multichannel data twenty patients focal epilepsy. results showed significant increase during seizures, particularly high-frequency calculated band allowed highly accurate classification seizure non-seizure segments [area under receiver operating characteristic curve (AUC) = 0.881] using only simple threshold. Conclusion: distribution-based capable associated seizures. Experiments simulated real demonstrated validity its applicability detection. Significance: quantified help detect high accuracy.

منابع مشابه

P81: Detection of Epileptic Seizures Using EEG Signal Processing

Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...

متن کامل

Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition

The electroencephalogram (EEG) signal is very important in the diagnosis of epilepsy. Long-term EEG recordings of an epileptic patient contain a huge amount of EEG data. The detection of epileptic activity is, therefore, a very demanding process that requires a detailed analysis of the entire length of the EEG data, usually performed by an expert. This paper describes an automated classificatio...

متن کامل

Epileptic Seizures Detection Based on Empirical Mode Decomposition of EEG Signals

Epilepsy is a chronic neurological disorder that affects more than 50 million people world wide, characterized by recurrent seizures (World Health Organization [WHO], 2006). An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain (Fisher et al., 2005 & Berg et al., 2010). This electrical hyperactivity can ha...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Hyperspherical manifold for EEG signals of epileptic seizures

The mathematical modelling of EEG signals of epileptic seizures presents a challenge as seizure data is erratic, often with no visible trend. Limitations in existing models indicate a need for a generalized model that can be used to analyze seizures without the need for apriori information, whilst minimizing the loss of signal data due to smoothing. This paper utilizes measure theory to design ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Biomedical Engineering

سال: 2021

ISSN: ['0018-9294', '1558-2531']

DOI: https://doi.org/10.1109/tbme.2020.3006246