Non-expansive derived horseshoes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-Expansive Pyramidal Morphological Image Coder

Pyramid Image Coding is a natural coding scheme for applications where progressive transmission is desired. In this kind of coder, versions of the original image at several resolution levels are formed by successive filtering and subsampling. Then, beginning from the coarsest image, the image is used to produce an estimate for the next (higher resolution) level and the error is coded and transm...

متن کامل

Convergence rates with inexact non-expansive operators

In this paper, we present a convergence rate analysis for the inexact Krasnosel’skĭı– Mann iteration built from nonexpansive operators. Our results include two main parts: we first establish global pointwise and ergodic iteration–complexity bounds, and then, under a metric subregularity assumption, we establish local linear convergence for the distance of the iterates to the set of fixed points...

متن کامل

Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes

In this paper we consider horseshoes containing an orbit of homoclinic tangency accumulated by periodic points. We prove a version of the Invariant Manifolds Theorem, construct finite Markov partitions and use them to prove the existence and uniqueness of equilibrium states associated to Hölder continuous potentials.

متن کامل

Homoclinic points of non-expansive automorphisms

We study homoclinic points of non-expansive automorphisms of compact abelian groups. Connections between the existence of non-trivial homoclinic points, expansiveness, entropy and adjoint automorphisms (in the sense of Einsiedler and Schmidt) are explored. Some implications for countable abelian group actions by automorphisms of compact abelian groups are also considered and it is shown that if...

متن کامل

Non Expansive Directions for Z Actions

We show that any direction in the plane occurs as the unique nonexpansive direction of a Z2 action, answering a question of Boyle and Lind. In the case of rational directions, the subaction obtained is non-trivial. We also establish that a cellular automaton acting on a subshift can have zero Lyapunov exponents and at the same time act sensitively; and more generally, for any positive real θ th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

سال: 1998

ISSN: 0263-6115

DOI: 10.1017/s1446788700035965