Non-existence of 6-dimensional pseudomanifolds with complementarity
نویسندگان
چکیده
منابع مشابه
Non-existence of 6-dimensional pseudomanifolds with complementarity
In a previous paper ([10]) the second author showed that if M is a pseudomanifold with complementarity other than the 6-vertex real projective plane and the 9-vertex complex projective plane, then M must have dimension ≥ 6, and in case of equality M must have exactly 12 vertices. In this paper we prove that such a 6-dimensional pseudomanifold does not exist. On the way to proving our main resul...
متن کاملThree-Dimensional Pseudomanifolds on Eight Vertices
A normal pseudomanifold is a pseudomanifold in which the links of simplices are also pseudomanifolds. So, a normal 2-pseudomanifold triangulates a connected closed 2-manifold. But, normal d-pseudomanifolds form a broader class than triangulations of connected closed dmanifolds for d ≥ 3. Here, we classify all the 8-vertex neighbourly normal 3-pseudomanifolds. This gives a classification of all ...
متن کاملFace numbers of pseudomanifolds with isolated singularities
We investigate the face numbers of simplicial complexes with Buchsbaum vertex links, especially pseudomanifolds with isolated singularities. This includes deriving Dehn-Sommerville relations for pseudomanifolds with isolated singularities and establishing lower and upper bound theorems when the singularities are also homologically isolated. We give formulas for the Hilbert function of a generic...
متن کاملNon-existence of nonorientable regular embeddings of n-dimensional cubes
By a regular embedding of a graph K into a surface we mean a 2-cell embedding of K into a compact connected surface with the automorphism group acting regularly on flags. Regular embeddings of the n-dimensional cubes Qn into orientable surfaces exist for any positive integer n. In contrast to this, we prove the non-existence of nonorientable regular embeddings of Qn for n > 2.
متن کاملNon-existence of Point-transitive 2-(106, 6, 1) Designs
Let S be a linear space with 106 points, with lines of size 6, and let G be an automorphism group of S. We prove that G cannot be point-transitive. In other words, there exists no point-transitive 2-(106, 6, 1) designs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: advg
سال: 2004
ISSN: 1615-7168,1615-715X
DOI: 10.1515/advg.2004.4.4.537