Non-existence of 6-dimensional pseudomanifolds with complementarity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-existence of 6-dimensional pseudomanifolds with complementarity

In a previous paper ([10]) the second author showed that if M is a pseudomanifold with complementarity other than the 6-vertex real projective plane and the 9-vertex complex projective plane, then M must have dimension ≥ 6, and in case of equality M must have exactly 12 vertices. In this paper we prove that such a 6-dimensional pseudomanifold does not exist. On the way to proving our main resul...

متن کامل

Three-Dimensional Pseudomanifolds on Eight Vertices

A normal pseudomanifold is a pseudomanifold in which the links of simplices are also pseudomanifolds. So, a normal 2-pseudomanifold triangulates a connected closed 2-manifold. But, normal d-pseudomanifolds form a broader class than triangulations of connected closed dmanifolds for d ≥ 3. Here, we classify all the 8-vertex neighbourly normal 3-pseudomanifolds. This gives a classification of all ...

متن کامل

Face numbers of pseudomanifolds with isolated singularities

We investigate the face numbers of simplicial complexes with Buchsbaum vertex links, especially pseudomanifolds with isolated singularities. This includes deriving Dehn-Sommerville relations for pseudomanifolds with isolated singularities and establishing lower and upper bound theorems when the singularities are also homologically isolated. We give formulas for the Hilbert function of a generic...

متن کامل

Non-existence of nonorientable regular embeddings of n-dimensional cubes

By a regular embedding of a graph K into a surface we mean a 2-cell embedding of K into a compact connected surface with the automorphism group acting regularly on flags. Regular embeddings of the n-dimensional cubes Qn into orientable surfaces exist for any positive integer n. In contrast to this, we prove the non-existence of nonorientable regular embeddings of Qn for n > 2.

متن کامل

Non-existence of Point-transitive 2-(106, 6, 1) Designs

Let S be a linear space with 106 points, with lines of size 6, and let G be an automorphism group of S. We prove that G cannot be point-transitive. In other words, there exists no point-transitive 2-(106, 6, 1) designs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: advg

سال: 2004

ISSN: 1615-7168,1615-715X

DOI: 10.1515/advg.2004.4.4.537