Non-equivalent hyperbolic knots

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-integral Toroidal Surgery on Hyperbolic Knots in S

It is shown that a hyperbolic knot in S3 admits at most one nonintegral Dehn surgery producing a toroidal manifold. Let K be a knot in the 3-sphere S and M = MK the complement of an open regular neighborhood of K in S. As usual, the set of slopes on the torus ∂M (i.e. the set of isotopy classes of essential simple loops on ∂M) is parameterized by {m/n : m,n ∈ Z, n > 0, (m,n) = 1} ∪ {1/0}, so th...

متن کامل

Peripheral Polynomials of Hyperbolic Knots

If K is a hyperbolic knot in the oriented S3, an algebraic component of its character variety containing the holonomy of the complete hyperbolic structure of finite volume of S3 \ K is an algebraic curve (excellent component K). The traces of the peripheral elements of K define polynomial functions in K. These functions are related in pairs by canonical polynomials. These peripheral polynomials...

متن کامل

Length equivalent hyperbolic manifolds

In the case when M is an orientable Riemannian manifold of negative curvature L (M) and L(M) are related to the eigenvalue spectrum of M; that is, the set E (M) of all eigenvalues of the Laplace–Beltrami operator acting on L2(M) counted with multiplicities. For example, in this setting it is known that E (M) determines L(M) (see [3]). In the case of closed hyperbolic surfaces, the stronger stat...

متن کامل

Constructing Geometrically Equivalent Hyperbolic Orbifolds

In this paper, we construct families of nonisometric hyperbolic orbifolds that contain the same isometry classes of nonflat totally geodesic subspaces. The main tool is a variant of the well-known Sunada method for constructing length-isospectral Riemannian manifolds that handles totally geodesic submanifolds of multiple codimensions simultaneously.

متن کامل

Twisted Alexander Polynomials of Hyperbolic Knots

We study a twisted Alexander polynomial naturally associated to a hyperbolic knot in an integer homology 3-sphere via a lift of the holonomy representation to SL(2,C). It is an unambiguous symmetric Laurent polynomial whose coefficients lie in the trace field of the knot. It contains information about genus, fibering, and chirality, and moreover is powerful enough to sometimes detect mutation. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2002

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(01)00240-1