Non-equivalent hyperbolic knots
نویسندگان
چکیده
منابع مشابه
Non-integral Toroidal Surgery on Hyperbolic Knots in S
It is shown that a hyperbolic knot in S3 admits at most one nonintegral Dehn surgery producing a toroidal manifold. Let K be a knot in the 3-sphere S and M = MK the complement of an open regular neighborhood of K in S. As usual, the set of slopes on the torus ∂M (i.e. the set of isotopy classes of essential simple loops on ∂M) is parameterized by {m/n : m,n ∈ Z, n > 0, (m,n) = 1} ∪ {1/0}, so th...
متن کاملPeripheral Polynomials of Hyperbolic Knots
If K is a hyperbolic knot in the oriented S3, an algebraic component of its character variety containing the holonomy of the complete hyperbolic structure of finite volume of S3 \ K is an algebraic curve (excellent component K). The traces of the peripheral elements of K define polynomial functions in K. These functions are related in pairs by canonical polynomials. These peripheral polynomials...
متن کاملLength equivalent hyperbolic manifolds
In the case when M is an orientable Riemannian manifold of negative curvature L (M) and L(M) are related to the eigenvalue spectrum of M; that is, the set E (M) of all eigenvalues of the Laplace–Beltrami operator acting on L2(M) counted with multiplicities. For example, in this setting it is known that E (M) determines L(M) (see [3]). In the case of closed hyperbolic surfaces, the stronger stat...
متن کاملConstructing Geometrically Equivalent Hyperbolic Orbifolds
In this paper, we construct families of nonisometric hyperbolic orbifolds that contain the same isometry classes of nonflat totally geodesic subspaces. The main tool is a variant of the well-known Sunada method for constructing length-isospectral Riemannian manifolds that handles totally geodesic submanifolds of multiple codimensions simultaneously.
متن کاملTwisted Alexander Polynomials of Hyperbolic Knots
We study a twisted Alexander polynomial naturally associated to a hyperbolic knot in an integer homology 3-sphere via a lift of the holonomy representation to SL(2,C). It is an unambiguous symmetric Laurent polynomial whose coefficients lie in the trace field of the knot. It contains information about genus, fibering, and chirality, and moreover is powerful enough to sometimes detect mutation. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2002
ISSN: 0166-8641
DOI: 10.1016/s0166-8641(01)00240-1