Non-divisibility of LCM matrices by GCD matrices on gcd-closed sets
نویسندگان
چکیده
منابع مشابه
Notes on the divisibility of GCD and LCM Matrices
Let S = {x1,x2, . . . ,xn} be a set of positive integers, and let f be an arithmetical function. The matrices (S) f = [ f (gcd(xi,xj))] and [S] f = [ f (lcm[xi,xj])] are referred to as the greatest common divisor (GCD) and the least common multiple (LCM) matrices on S with respect to f , respectively. In this paper, we assume that the elements of the matrices (S) f and [S] f are integers and st...
متن کاملDivisibilty Properties of Gcd Ve Lcm Matrices
Let a, b and n be positive integers and let S = {x1, x2, . . . , xn} be a set of distinct positive integers. The n × n matrix (Sf ) = (f ((xi, xj))), having f evaluated at the greatest common divisor (xi, xj) of xi and xj as its ij−entry, is called the GCD matrix associated with f on the set S. Similarly, the n × n matrix [Sf ] = (f ([xi, xj ])) is called the LCM matrix associated with f on S. ...
متن کاملEla an Analysis of Gcd and Lcm Matrices via the Ldl -factorization∗
Let S = {x1, x2, . . . , xn} be a set of distinct positive integers such that gcd(xi, xj) ∈ S for 1 ≤ i, j ≤ n. Such a set is called GCD-closed. In 1875/1876, H.J.S. Smith showed that, if the set S is “factor-closed”, then the determinant of the matrix eij = gcd(xi, xj) is det(E) = ∏n m=1 φ(xm), where φ denotes Euler’s Phi-function. Since the early 1990’s there has been a rebirth of interest in...
متن کاملGcd Matrices, Posets, and Nonintersecting Paths
We show that with any finite partially ordered set, P , one can associate a matrix whose determinant factors nicely. As corollaries, we obtain a number of results in the literature about GCD matrices and their relatives. Our main theorem is proved combinatorially using nonintersecting paths in a directed graph.
متن کاملAn analysis of GCD and LCM matrices via the LDL^T-factorization
Let S = {x1, x2, . . . , xn} be a set of distinct positive integers such that gcd(xi, xj) ∈ S for 1 ≤ i, j ≤ n. Such a set is called GCD-closed. In 1875/1876, H.J.S. Smith showed that, if the set S is “factor-closed”, then the determinant of the matrix eij = gcd(xi, xj) is det(E) = ∏n m=1 φ(xm), where φ denotes Euler’s Phi-function. Since the early 1990’s there has been a rebirth of interest in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2017
ISSN: 0024-3795
DOI: 10.1016/j.laa.2016.11.028