Non-commutative interpolation of Sobolev-Besov and Lebesgue spaces with weights
نویسندگان
چکیده
منابع مشابه
Interpolation of Besov Spaces
We investigate Besov spaces and their connection with dyadic spline approximation in Lp(Cl), 0 < p < oo. Our main results are: the determination of the interpolation spaces between a pair of Besov spaces; an atomic decomposition for functions in a Besov space; the characterization of the class of functions which have certain prescribed degree of approximation by dyadic splines.
متن کاملMULTI-INDEXED p-ORTHOGONAL SUMS IN NON-COMMUTATIVE LEBESGUE SPACES
In this paper we extend a recent Pisier’s inequality for p-orthogonal sums in non-commutative Lebesgue spaces. To that purpose, we generalize the notion of p-orthogonality to the class of multi-indexed families of operators. This kind of families appear naturally in certain non-commutative Khintchine type inequalities associated with free groups. Other p-orthogonal families are given by the hom...
متن کاملInterpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin Spaces and Applications to Problems in Partial Differential Equations
In their ground-breaking work [42], D. Jerison and C. Kenig have studied the well-posedness of the Poisson problem for the Dirichlet Laplacian on Besov and Bessel potential spaces, ∆u = f ∈ B α (Ω), u ∈ B α+2(Ω), Tru = 0 on ∂Ω, (1.1) ∆u = f ∈ Lα(Ω), u ∈ Lpα+2(Ω), Tru = 0 on ∂Ω, (1.2) in a bounded Lipschitz domain Ω ⊂ R. Let GD be the Green operator associated with the Dirichlet Laplacian in Ω ⊂...
متن کاملInterpolation, Embeddings and Traces of Anisotropic Fractional Sobolev Spaces with Temporal Weights
We investigate the properties of a class of weighted vector-valued Lp-spaces and the corresponding (an)isotropic Sobolev-Slobodetskii spaces. These spaces arise naturally in the context of maximal Lp-regularity for parabolic initial-boundary value problems. Our main tools are operators with a bounded H∞-calculus, interpolation theory, and operator sums.
متن کاملReal interpolation of Sobolev spaces
We prove that W 1 p is a real interpolation space between W 1 p1 and W 1 p2 for p > q0 and 1 ≤ p1 < p < p2 ≤ ∞ on some classes of manifolds and general metric spaces, where q0 depends on our hypotheses.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1981
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1981.101752