Non-autonomous Svinolupov-Jordan KdV systems
نویسندگان
چکیده
منابع مشابه
jordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولJordan Manifolds and Dispersionless KdV Equations
Multicomponent KdV-systems are defined in terms of a set of structure constants and, as shown by Svinolupov, if these define a Jordan algebra the corresponding equations may be said to be integrable, at least in the sense of having higher-order symmetries, recursion operators and hierarchies of conservation laws. In this paper the dispersionless limits of these Jordan KdV equations are studied,...
متن کاملINTEGRABILITY OF A NON-AUTONOMOUS COUPLED KdV SYSTEM
For a better understanding of complicated physical phenomena scientists have experienced that it is necessary to introduce mathematical models whose time evolutions might show some features very similar to those of the original phenomena. These models are usually systems of nonlinear differential equations. These equations can be solved by the use of approximation techniques. But the range of a...
متن کاملNon-autonomous Hénon-Heiles Systems
Scaling similarity solutions of three integrable PDEs, namely the Sawada-Kotera, fifth order KdV and Kaup-Kupershmidt equations, are considered. It is shown that the resulting ODEs may be written as non-autonomous Hamiltonian equations, which are time-dependent generalizations of the well-known integrable Hénon-Heiles systems. The (time-dependent) Hamiltonians are given by logarithmic derivativ...
متن کاملRobust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems
This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2001
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/34/28/306