Nilpotent symmetric Jacobian matrices and the Jacobian Conjecture II

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nilpotent Symmetric Jacobian Matrices and the Jacobian Conjecture Ii

It is shown that the Jacobian Conjecture holds for all polynomial maps F : k → k of the form F = x + H , such that JH is nilpotent and symmetric, when n ≤ 4. If H is also homogeneous a similar result is proved for all n ≤ 5. Introduction Let F := (F1, . . . , Fn) : C → C be a polynomial map i.e. each Fi is a polynomial in n variables over C. Denote by JF := (i ∂xj )1≤i,j≤n, the Jacobian matrix ...

متن کامل

Jacobian Conjecture and Nilpotent Mappings

We prove the equivalence of the Jacobian Conjecture (JC(n)) and the Conjecture on the cardinality of the set of fixed points of a polynomial nilpotent mapping (JN(n)) and prove a series of assertions confirming JN(n).

متن کامل

Hessian Nilpotent Polynomials and the Jacobian Conjecture

Let z = (z1, · · · , zn) and ∆ = ∑n i=1 ∂ 2 ∂z i the Laplace operator. The main goal of the paper is to show that the wellknown Jacobian conjecture without any additional conditions is equivalent to the following what we call vanishing conjecture: for any homogeneous polynomial P (z) of degree d = 4, if ∆P(z) = 0 for all m ≥ 1, then ∆P(z) = 0 when m >> 0, or equivalently, ∆P(z) = 0 when m > 3 2...

متن کامل

On the Jacobian Conjecture

The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k . Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2005

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2004.08.030