Nilpotent completions of partial upper triangular matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

completions on partial matrices ?

An n × n matrix is called an N0-matrix if all its principal minors are nonpositive. In this paper, we are interested in N0-matrix completion problems, that is, when a partial N0-matrix has an N0-matrix completion. In general, a combinatorially or non-combinatorially symmetric partial N0-matrix does not have an N0-matrix completion. Here, we prove that a combinatorially symmetric partial N0-matr...

متن کامل

Spectrum preserving lower triangular completions - the nonnegative nilpotent case

Nonnegative nilpotent lower triangular completions of a nonnegative nilpotent matrix are studied. It is shown that for every natural number between the index of the matrix and its order, there exists a completion that has this number as its index. A similar result is obtained for the rank. However, unlike the case of complex completions of complex matrices, it is proved that for every nonincrea...

متن کامل

Non-additive Lie centralizer of infinite strictly upper triangular matrices

‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})...

متن کامل

cocharacters of upper triangular matrices

we survey some recent results on cocharacters of upper triangular matrices. in particular, we deal both with ordinary and graded cocharacter sequence; we list the principal combinatorial results; we show di erent tech-niques in order to solve similar problems.

متن کامل

Totally nonpositive completions on partial matrices ∗ †

An n × n real matrix is said to be totally nonpositive if every minor is nonpositive. In this paper, we are interested in totally nonpositive completion problems, that is, does a partial totally nonpositive matrix have a totally nonpositive matrix completion? This problem has, in general, a negative answer. Therefore, we analyze the question: for which labeled graphs G does every partial totall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2004

ISSN: 0024-3795

DOI: 10.1016/j.laa.2004.04.018