Nilpotence of finite Moufang 2-loops

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generators for Finite Simple Moufang Loops

Moufang loops are one of the best-known generalizations of groups. There is only one countable family of nonassociative finite simple Moufang loops, arising from the split octonion algebras. We prove that every member of this family is generated by three elements, using the classical results on generators of unimodular groups.

متن کامل

Generators of Nonassociative Simple Moufang Loops over Finite Prime Fields

The first class of nonassociative simple Moufang loops was discovered by L. Paige in 1956 [9], who investigated Zorn’s and Albert’s construction of simple alternative rings. M. Liebeck proved in 1987 [7] that there are no other finite nonassociative simple Moufang loops. We can briefly describe the class as follows: For every finite field F, there is exactly one simple Moufang loop. Recall Zorn...

متن کامل

on the commutativity degree in finite moufang loops

the textit{commutativity degree}, $pr(g)$, of a finite group $g$ (i.e. the probability that two (randomly chosen) elements of $g$ commute with respect to its operation)) has been studied well by many authors. it is well-known that the best upper bound for $pr(g)$ is $frac{5}{8}$ for a finite non--abelian group $g$. in this paper, we will define the same concept for a finite non--abelian textit{...

متن کامل

0 N ov 1 99 6 CLASS 2 MOUFANG LOOPS , SMALL FRATTINI MOUFANG LOOPS , AND CODE LOOPS

Let L be a Moufang loop which is centrally nilpotent of class 2. We first show that the nuclearly-derived subloop (normal associator subloop) L∗ of L has exponent dividing 6. It follows that Lp (the subloop of L of elements of p-power order) is associative for p > 3. Next, a loop L is said to be a small Frattini Moufang loop, or SFML, if L has a central subgroup Z of order p such that C ∼= L/Z ...

متن کامل

On Moufang A-loops

In a series of papers from the 1940’s and 1950’s, R.H. Bruck and L.J. Paige developed a provocative line of research detailing the similarities between two important classes of loops: the diassociative A-loops and the Moufang loops ([1]). Though they did not publish any classification theorems, in 1958, Bruck’s colleague, J.M. Osborn, managed to show that diassociative, commutative A-loops are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1968

ISSN: 0021-8693

DOI: 10.1016/0021-8693(68)90051-3