Niching Grey Wolf Optimizer for Multimodal Optimization Problems
نویسندگان
چکیده
Metaheuristic algorithms are widely used for optimization in both research and the industrial community simplicity, flexibility, robustness. However, multi-modal is a difficult task, even metaheuristic algorithms. Two important issues that need to be handled solving problems (a) categorize multiple local/global optima (b) uphold these till ending. Besides, robust local search ability also prerequisite reach exact global optima. Grey Wolf Optimizer (GWO) recently developed nature-inspired algorithm requires less parameter tuning. GWO suffers from premature convergence fails maintain balance between exploration exploitation problems. This study proposes niching (NGWO) incorporates personal best features of PSO technique address issues. The proposed has been tested 23 benchmark functions three engineering cases. NGWO outperformed all other considered most test compared state-of-the-art metaheuristics such as PSO, GSA, GWO, Jaya two improved variants CSA. Statistical analysis Friedman tests have conducted compare performance thoroughly.
منابع مشابه
An Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملGrey Wolf Optimizer
This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, enc...
متن کاملModified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding
The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by th...
متن کاملExperienced Grey Wolf Optimizer through Reinforcement Learning and Neural Networks
In this paper, a variant of Grey Wolf Optimizer (GWO) that uses reinforcement learning principles combined with neural networks to enhance the performance is proposed. The aim is to overcome, by reinforced learning, the common challenges of setting the right parameters for the algorithm. In GWO, a single parameter is used to control the exploration/exploitation rate which influences the perform...
متن کاملWind Integrated Thermal Unit Commitment Solution using Grey Wolf Optimizer
Received Dec 24, 2016 Revised Apr 26, 2017 Accepted Jun 14, 2017 The augment of ecological shield and the progressive exhaustion of traditional fossil energy sources have increased the interests in integrating renewable energy sources into existing power system. Wind power is becoming worldwide a significant component of the power generation portfolio. Profuse literatures have been reported for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11114795