Neyman-Pearson classification algorithms and NP receiver operating characteristics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neyman-Pearson classification algorithms and NP receiver operating characteristics

In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II ...

متن کامل

Neyman - Pearson ( NP ) Classification Algorithms and NP Receiver

In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (i.e., the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II err...

متن کامل

Neyman-Pearson Classification, Convexity and Stochastic Constraints

Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i) its probability of type I error is below a pre-specifie...

متن کامل

Neyman-Pearson classification under a strict constraint

Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i), its probability of type I error is below a pre-specifi...

متن کامل

Performance Measures for Neyman-Pearson Classification

In the Neyman-Pearson (NP) classification paradigm, the goal is to learn a classifier from labeled training data such that the probability of a false negative is minimized while the probability of a false positive is below a user-specified level α ∈ (0, 1). This work addresses the question of how to evaluate and compare classifiers in the NP setting. Simply reporting false positives and false n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science Advances

سال: 2018

ISSN: 2375-2548

DOI: 10.1126/sciadv.aao1659