New interpolation spaces and strict Hölder regularity for fractional abstract Cauchy problem

نویسندگان

چکیده

Abstract We know that interpolation spaces in terms of analytic semigroup have a significant role into the study strict Hölder regularity solutions classical abstract Cauchy problem (ACP). In this paper, we first construct solution operators fractional calculus and characterize these spaces. Then establish mild order ACP.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Solvability of an Inverse Fractional Abstract Cauchy Problem

This note is devoted to study an inverse Cauchy problem in a Hilbert space H for fractional abstract differential equations of the form; ), ( ) ( ) ( = ) ( t g t f t u A dt t u d    with the initial condition H u u = (0) 0 and the overdetermination condition: ), ( = ) ), ( ( t w v t u where (.,.) is the inner product in H , f is a real unknown function w is a given real function, 0 u , v ar...

متن کامل

Hölder Regularity for Abstract Fractional Cauchy Problems with Order in (0,1)

In this paper, we study the regularity of mild solution for the following fractional abstract Cauchy problem ( ) ( ) ( ), (0, ] t D u t Au t f t t T α = + ∈ (0) u = 0 x on a Banach space X with order (0,1) α ∈ , where the fractional derivative is understood in the sense of Caputo fractional derivatives. We show that if A generates an analytic α-times resolvent family on X and ([0, ]; ) p f L T ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2021

ISSN: ['1687-2770', '1687-2762']

DOI: https://doi.org/10.1186/s13661-021-01559-w