New HSIC-based tests for independence between two stationary multivariate time series

نویسندگان

چکیده

This paper proposes some novel one-sided omnibus tests for independence between two multivariate stationary time series. These new apply the Hilbert-Schmidt criterion (HSIC) to test innovations of both Under regular conditions, limiting null distributions our HSIC-based are established. Next, shown be consistent. Moreover, a residual bootstrap method is used obtain critical values tests, and its validity justified. Compared with existing cross-correlation-based linear dependence, examine general (including non-linear) dependence give investigators more complete information on causal relationship The merits illustrated by simulation results real example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Portmanteau Test for Independence between Two Stationary Time Series

We propose generalized portmanteau-type test statistics in the frequency domain to test independence between two stationary time series. The test statistics are formed analogous to the one in Chen and Deo (2004, Econometric Theory 20, 382-416), who extended the applicability of portmanteau goodness-of-fit test to the long memory case. Under the null hypothesis of independence, the asymptotic st...

متن کامل

Testing for Independence between Two stationary Time Series via the Empirical Characteristic Function

This paper proposes an asymptotic one-sided N(0, 1) test for independence between two stationary time series using the empirical characteristic function. Unlike the tests based on the cross-correlation function (e.g. Haugh, 1976; Hong, 1996; Koch & Yang 1986), the proposed test has power against all pairwise cross-dependencies, including those with zero cross-correlation. By differentiating the...

متن کامل

A new adaptive exponential smoothing method for non-stationary time series with level shifts

Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...

متن کامل

Testing for Independence between Functional Time Series

Frequently econometricians are interested in verifying a relationship between two or more time series. Such analysis is typically carried out by causality and/or independence tests which have been well studied when the data is univariate or multivariate. Modern data though is increasingly of a high dimensional or functional nature for which finite dimensional methods are not suitable. In the pr...

متن کامل

Goodness-of-Fit Tests for Copulas of Multivariate Time Series

In this paper, we study the asymptotic behavior of the sequential empirical process and the sequential empirical copula process, both constructed from residuals of multivariate stochastic volatility models. Applications for the detection of structural changes and specification tests of the distribution of innovations are discussed. It is also shown that if the stochastic volatility matrices are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2021

ISSN: ['1017-0405', '1996-8507']

DOI: https://doi.org/10.5705/ss.202018.0159