New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals

Some Hermite-Hadamard type inequalities for generalized k-fractional integrals (which are also named [Formula: see text]-Riemann-Liouville fractional integrals) are obtained for a fractional integral, and an important identity is established. Also, by using the obtained identity, we get a Hermite-Hadamard type inequality.

متن کامل

Hermite-hadamard Type Inequalities via Conformable Fractional Integrals

In this study, a new identity involving conformable fractional integrals is given. Then, by using this identity, some new Hermite-Hadamard type inequalities for conformable fractional integrals have been developed.

متن کامل

Discussion of some inequalities via fractional integrals

Recently, many generalizations and extensions of well-known inequalities were obtained via different kinds of fractional integrals. In this paper, we show that most of those results are particular cases of (or equivalent to) existing inequalities from the literature. As consequence, such results are not real generalizations.

متن کامل

Ostrowski type inequalities involving conformable fractional integrals

In the article, we establish several Ostrowski type inequalities involving the conformable fractional integrals. As applications, we find new inequalities for the arithmetic and generalized logarithmic means.

متن کامل

New Inequalities Using Fractional Q-integrals Theory

The aim of the present paper is to establish some new fractional q-integral inequalities on the specific time scale: Tt0 = {t : t = t0q, n ∈ N} ∪ {0}, where t0 ∈ R, and 0 < q < 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2020

ISSN: 1687-1847

DOI: 10.1186/s13662-020-03093-y