New dissipative particle dynamics boundary condition for complex geometry
نویسندگان
چکیده
منابع مشابه
Dynamical geometry for multiscale dissipative particle dynamics
In this paper, we review the computational aspects of a multiscale dissipative particle dynamics model for complex fluid simulations based on the feature-rich geometry of the Voronoi tessellation. The geometrical features of the model are critical since the mesh is directly connected to the physics by the interpretation of the Voronoi volumes of the tessellation as coarse-grained fluid clusters...
متن کاملBoundary conditions in dissipative particle dynamics
We study a continuum model for simulating solid boundaries of a DPD fluid. A layer of frozen DPD particles is placed on the wall boundary and a continuum limit is taken. This produces effective dissipative and random forces. In addition, a reflection at the wall must be specified in order to confine the fluid. Three different wall reflection laws are studied and their effectiveness in producing...
متن کاملTime-dependent and outflow boundary conditions for Dissipative Particle Dynamics
We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain lo...
متن کاملA stochastic boundary forcing for dissipative particle dynamics
The method of dissipative particle dynamics (DPD) is an effective, coarse grained model of the hydrodynamics of complex fluids. DPD simulations of wall-bounded flows are however often associated with spurious fluctuations of the fluid properties near the wall. We present a novel stochastic boundary forcing for DPD simulations of wall-bounded flows, based on the identification of fluctuations in...
متن کاملSplitting for Dissipative Particle Dynamics
We study numerical methods for dissipative particle dynamics, a system of stochastic differential equations for simulating particles interacting pairwise according to a soft potential at constant temperature where the total momentum is conserved. We introduce splitting methods and examine the behavior of these methods experimentally. The performance of the methods, particularly temperature cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Physica Sinica
سال: 2019
ISSN: 1000-3290
DOI: 10.7498/aps.68.20190533