New Criteria of Model Selection and Model Averaging in Linear Regression Models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Model Averaging for Linear Regression Models

We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem involves averaging over all possible models (i.e., combinations of predictors) when making inferenc...

متن کامل

Consistency Properties of Model Selection Criteria in Multiple Linear Regression

This paper concerns the asymptotic properties of a class of criteria for model selection in linear regression models, which covers the most well known criteria as e.g. MALLOWS' Cp, CV (cross-validation), GCV ( generalized cross-validation), AKAIKE's AIC and FPE as well as SCHWARZ' BIC. These criteria are shown to be consistent in the sense of selecting the true or larger models, assuming i.i.d....

متن کامل

Sequential Model Averaging for High Dimensional Linear Regression Models

In high dimensional data analysis, we propose a sequential model averaging (SMA) method to make accurate and stable predictions. Specifically, we introduce a hybrid approach that combines a sequential screening process with a model averaging algorithm, where the weight of each model is determined by its Bayesian information (BIC) score (Schwarz, 1978; Chen and Chen, 2008). The sequential techni...

متن کامل

Model Selection and Model Averaging for Neural Network Regression

NEURAL NETWORK REGRESSION Herbert K. H. Lee, Duke University Box 90251, Durham, NC 27708, herbie stat.duke.edu

متن کامل

Bayesian Model Averaging of Dynamic Linear Models

In this paper we aim to compare the performance of three different Bayesian model averaging (or mixture) methods applied to regression dynamic linear models for beverage data from Zimbabwe. The models are chosen to reflect different plausible causal structures of association between beverage sales and other variables, thought to influence beverage sales, such as prices, temperature and maize cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Theoretical and Applied Statistics

سال: 2014

ISSN: 2326-8999

DOI: 10.11648/j.ajtas.20140305.15