New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

Linear Weingarten surfaces in Euclidean and hyperbolic space

In this paper we review some author’s results about Weingarten surfaces in Euclidean space R 3 and hyperbolic space H 3 . We stress here in the search of examples of linear Weingarten surfaces that satisfy a certain geometric property. First, we consider Weingarten surfaces in R 3 that are foliated by circles, proving that the surface is rotational, a Riemann example or a generalized cone. Next...

متن کامل

linear weingarten hypersurfaces in a unit sphere

in this paper, by modifying cheng-yau$'$s technique to complete hypersurfaces in $s^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [h. li, hypersurfaces with constant scalar curvature in space forms, {em math. ann.} {305} (1996), 665--672].

متن کامل

Parabolic Weingarten surfaces in hyperbolic space

A surface in hyperbolic space H 3 invariant by a group of parabolic isometries is called a parabolic surface. In this paper we investigate parabolic surfaces of H 3 that satisfy a linear Weingarten relation of the form aκ1 + bκ2 = c or aH + bK = c, where a, b, c ∈ R and, as usual, κi are the principal curvatures, H is the mean curvature and K is de Gaussian curvature. We classify all parabolic ...

متن کامل

Rotational linear Weingarten surfaces of hyperbolic type

A linear Weingarten surface in Euclidean space R 3 is a surface whose mean curvature H and Gaussian curvature K satisfy a relation of the form aH + bK = c, where a, b, c ∈ R. Such a surface is said to be hyperbolic when a + 4bc < 0. In this paper we classify all rotational linear Weingarten surfaces of hyperbolic type. As a consequence, we obtain a family of complete hyperbolic linear Weingarte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archivum Mathematicum

سال: 2015

ISSN: 0044-8753,1212-5059

DOI: 10.5817/am2015-4-201