Neurotrophin Regulation of Cortical Dendritic Growth Requires Activity
نویسندگان
چکیده
منابع مشابه
Neurotrophin Regulation of Cortical Dendritic Growth Requires Activity
Neurotrophins have been proposed to mediate several forms of activity-dependent competition in the central nervous system. A key element of such hypotheses is that neurotrophins act preferentially on active neurons; however, little direct evidence supports this postulate. We therefore examined, in ferret cortical brain slices, the interactions between activity and neurotrophins in regulating de...
متن کاملDendritic cell development requires histone deacetylase activity
DCs develop from multipotent progenitors (MPPs), which commit into DC-restricted common dendritic cell progenitors (CDPs). CDPs further differentiate into classical DCs (cDCs) and plasmacytoid DCs (pDCs). Here, we studied the impact of histone acetylation on DC development in C57BL/6 mice by interfering with histone acetylation and deacetylation, employing histone deacetylase (HDAC) inhibitors....
متن کاملSleep-dependent plasticity requires cortical activity.
Recent findings in humans and animals suggest that sleep promotes synaptic plasticity, but the underlying mechanisms have not been identified. We have demonstrated recently an important role for sleep in ocular dominance (OD) plasticity, a classic form of in vivo cortical remodeling triggered by monocular deprivation (MD) during a critical period of development. The mechanisms responsible for t...
متن کاملActivity-dependent regulation of dendritic spine density on cortical pyramidal neurons in organotypic slice cultures.
In order to examine the effects of activity on spine production and/or maintenance in the cerebral cortex, we have compared the number of dendritic spines on pyramidal neurons in slices of P0 mouse somatosensory cortex maintained in organotypic slice cultures under conditions that altered basal levels of spontaneous electrical activity. Cultures chronically exposed to 100 microM picrotoxin (PTX...
متن کاملInhibitory Regulation of Dendritic Activity in vivo
The spatiotemporal control of neuronal excitability is fundamental to the inhibitory process. We now have a wealth of information about the active dendritic properties of cortical neurons including axonally generated sodium action potentials as well as local sodium spikelets generated in the dendrites, calcium plateau spikes, and NMDA spikes. All of these events have been shown to be highly mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 1996
ISSN: 0896-6273
DOI: 10.1016/s0896-6273(00)80239-1