منابع مشابه
Neuroscience Networks
The completion of the human genome project has ushered in a new era in which biology has become an information science. In this new era, sharing of information is quickly becoming a critical aspect of scientific discovery. As directors of National Institutes of Health (NIH) institutes dedicated to neuroscience, we recognize several areas of research where sharing of primary data will be necessa...
متن کاملNeural networks for computational neuroscience
Computational neuroscience is an appealing interdisciplinary domain, at the interface between biology and computer science. It aims at understanding the experimental data obtained in neuroscience using several different kinds of models, one of which being artificial neural networks. In this tutorial we review some of the advances neural networks have achieved in computational neuroscience, and ...
متن کاملNeural Networks and Neuroscience-Inspired Computer Vision
Brains are, at a fundamental level, biological computing machines. They transform a torrent of complex and ambiguous sensory information into coherent thought and action, allowing an organism to perceive and model its environment, synthesize and make decisions from disparate streams of information, and adapt to a changing environment. Against this backdrop, it is perhaps not surprising that com...
متن کاملBayesian networks to answer challenging neuroscience questions
In this keynote lecture we will show how Bayesian networks can address important neuroscience problems. These problems include: (a) neuroanatomy issues, like modeling and simulation of dendritic trees and classifying neuron types based on morphological features; (b) neurodegenerative diseases, like predicting health-related quality of life in Parkinson's disease, classification of dementia stag...
متن کاملBayesian networks in neuroscience: a survey
Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS Biology
سال: 2003
ISSN: 1545-7885
DOI: 10.1371/journal.pbio.0000017