Neural networks for FDTD‐backed permittivity reconstruction
نویسندگان
چکیده
منابع مشابه
Neural networks for FDTD-backed permittivity reconstruction
Purpose – To outline different versions of a novel method for accurate and efficient determining the dielectric properties of arbitrarily shaped materials. Design/methodology/approach – Complex permittivity is found using an artificial neural network procedure designed to control a 3D FDTD computation of S-parameters and to process their measurements. Network architectures are based on multilay...
متن کاملApplication of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neura...
متن کاملDetermination of Complex Permittivity with Neural Networks and Fdtd Modeling
A simple novel cavity-independent method of determination of dielectric properties of arbitrarily shaped materials is presented. Complex permittivity is reconstructed using a neural networking procedure matching the measured and FDTD-modeled frequency characteristics of the reflection coefficient. High accuracy and practical suitability are demonstrated through numerical testing and determinati...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Bezier Surface Reconstruction using Artificial Neural Networks
1 Kavita, 2 Navin Rajpal 1 Research Scholar, 2 Professor USICT, Guru Gobind Singh Indraprastha University Delhi, INDIA. _______________________________________________________________________________________ Abstract: Surface Reconstruction forms a key to many image processing and computer graphics applications. In the current work we have focused on the reconstruction of Bezier surfaces from a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
سال: 2005
ISSN: 0332-1649
DOI: 10.1108/03321640510571318