Neural Networks for Classification and Regression
نویسندگان
چکیده
منابع مشابه
Evolution of neural networks for classification and regression
Although Artificial Neural Networks (ANNs) are important Data Mining techniques, the search for the optimal ANN is a challenging task: the ANN should learn the input-output mapping without overfitting the data and training algorithms may get trapped in local minima. The use of Evolutionary Computation (EC) is a promising alternative for ANN optimization. This work presents two hybrid EC/ANN alg...
متن کاملEvolutionary Design of Neural Networks for Classification and Regression
The Multilayer Perceptrons (MLPs) are the most popular class of Neural Networks. When applying MLPs, the search for the ideal architecture is a crucial task, since it should should be complex enough to learn the input/output mapping, without overfitting the training data. Under this context, the use of Evolutionary Computation makes a promising global search approach for model selection. On the...
متن کاملEstimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?
Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...
متن کاملEconomic classification and regression problems and neural networks
Artificial neural networks provide powerful models for solving many economic classifications, as well as regression problems. For example, they were successfully used for the discrimination between healthy economic agents and those prone to bankruptcy, for the inflation-deflation forecasting, for the currency exchange rates prediction, or for the prediction of share prices. At present, the neur...
متن کاملPruned Neural Networks for Regression
Neural networks have been widely used as a tool for regression. They are capable of approximating any function and they do not require any assumption about the distribution of the data. The most commonly used architectures for regression are the feedforward neural networks with one or more hidden layers. In this paper, we present a network pruning algorithm which determines the number of units ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics & Biostatistics International Journal
سال: 2015
ISSN: 2378-315X
DOI: 10.15406/bbij.2015.02.00046