NEURAL NETWORK SYSTEM FOR DIAGNOSTICS OF AVIATION DESIGNATION PRODUCTS
نویسندگان
چکیده
منابع مشابه
Neural Network Application to Diagnostics
Diagnosis of faults in complex, real-time control systems is a complicated task that has resisted solution by traditional methods. We have shown that neural networks can be successfully employed to diagnose faults in digitally controlled powertrain systems. This paper discusses the means we use to develop the appropriate databases for training and testing in order to select the optimum network ...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Neural Network Classifiers for Natural Food Products
Two cheap, off-the-shelf machine vision systems (MVS), each using an artificial neural network (ANN) as classifier, were developed, improved and evaluated to automate the classification of tomato ripeness and acceptability of eggs, respectively. Six thousand color images of human-graded tomatoes and 750 images of humangraded eggs were used to train, test, and validate several multi-layered ANNs...
متن کاملUtilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations
This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...
متن کاملAn Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of National Aviation University
سال: 2011
ISSN: 2306-1472,1813-1166
DOI: 10.18372/2306-1472.47.18