Neural network regularization in the problem of few-view computed tomography
نویسندگان
چکیده
The computed tomography allows to reconstruct the inner morphological structure of an object without physical destructing. accuracy digital image reconstruction directly depends on measurement conditions tomographic projections, in particular, number recorded projections. In medicine, reduce dose patient load there try measured However, a few-view tomography, when we have small using standard algorithms leads reconstructed images degradation. main feature our approach for is that algebraic being finalized by neural network with keeping projection data because additive result zero space forward operator. final presents sum calculated and reconstruction. First element second orthogonal addition space. Last applying method few-angle sinogram. dependency model between elements operator built networks. It demonstrated realization suggested achieving better computation time than state-of-the-art approaches test from Low Dose CT Challenge dataset increasing reprojection error.
منابع مشابه
analysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولthe problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اول4D Computed Tomography Reconstruction from Few-Projection Data via Temporal Non-local Regularization
4D computed tomography (4D-CT) is an important modality in medical imaging due to its ability to resolve patient anatomy motion in each respiratory phase. Conventionally 4D-CT is accomplished by performing the reconstruction for each phase independently as in a CT reconstruction problem. We propose a new 4D-CT reconstruction algorithm that explicitly takes into account the temporal regularizati...
متن کاملSparse-view computed tomography image reconstruction via a combination of L(1) and SL(0) regularization.
Low-dose computed tomography reconstruction is an important issue in the medical imaging domain. Sparse-view has been widely studied as a potential strategy. Compressed sensing (CS) method has shown great potential to reconstruct high-quality CT images from sparse-view projection data. Nonetheless, low-contrast structures tend to be blurred by the total variation (TV, L1-norm of the gradient im...
متن کاملThe conjugate gradient regularization method in Computed Tomography problems
In this work we solve inverse problems coming from the area of Computed Tomography by means of regularization methods based on conjugate gradient iterations. We develop a stopping criterion which is eecient for the computation of a regularized solution for the least{squares normal equations. The stopping rule can be suitably applied also to the Tikhonov regularization method. We report computat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Optics
سال: 2022
ISSN: ['2412-6179', '0134-2452']
DOI: https://doi.org/10.18287/2412-6179-co-1035