Neumann Homogenization via Integro-Differential Operators. Part 2: Singular Gradient Dependence
نویسندگان
چکیده
منابع مشابه
Periodic Homogenization for Nonlinear Integro-Differential Equations
In this note, we prove the periodic homogenization for a family of nonlinear nonlocal “elliptic” equations with oscillatory coefficients. Such equations include, but are not limited to Bellman equations for the control of pure jump processes and the Isaacs equations for differential games of pure jump processes. The existence of an effective equation and convergence the solutions of the family ...
متن کاملThe Legendre Wavelet Method for Solving Singular Integro-differential Equations
In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.
متن کاملSingular perturbations of integro-differential equations
We study the singular perturbation problem (E2) 2 2u′′ 2 (t) + u ′ 2(t) = Au2(t) + (K ∗Au2)(t) + f2(t), t ≥ 0, 2 > 0, for the integrodifferential equation (E) w′(t) = Aw(t) + (K ∗Aw)(t) + f(t), t ≥ 0, in a Banach space, when 2 → 0. Under the assumption that A is the generator of a strongly continuous cosine family and under some regularity conditions on the scalar-valued kernel K we show that p...
متن کاملSingular fractional integro-differential inequalities and applications
* Correspondence: [email protected] Department of Mathematical Sciences, Princess Nora Bint Abdulrahman University, Riyadh 84428, Saudi Arabia Full list of author information is available at the end of the article Abstract In this article, fractional integro-differential inequalities with singular coefficients have been considered. The bounds obtained for investigating the behavior of the ...
متن کاملTrace Formulae for Matrix Integro-Differential Operators
where λ is a spectral parameter, Y (x) = [yk(x)]k=1,d is a column vector, Q(x) and M(x, t) are d×d real symmetric matrix-valued functions, and h and H are d×d real symmetric constant matrices. M(x, t) is an integrable function on the set D0 def ={(x, t) : 0≤ t ≤ x ≤ π, x, t ∈ R}, Q ∈ C1[0,π], where C1[0,π] denotes a set whose element is a continuously differentiable function on [0,π]. In partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematical Analysis
سال: 2018
ISSN: 0036-1410,1095-7154
DOI: 10.1137/16m1080860