Network-Based Methods for Prediction of Drug-Target Interactions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity i...

متن کامل

Prediction of Drug-Target Interactions for Drug Repositioning Only Based on Genomic Expression Similarity

Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI). However, DTI discovery by experiment remains a challengi...

متن کامل

Drug–target interaction prediction through domain-tuned network-based inference

MOTIVATION The identification of drug-target interaction (DTI) represents a costly and time-consuming step in drug discovery and design. Computational methods capable of predicting reliable DTI play an important role in the field. Recently, recommendation methods relying on network-based inference (NBI) have been proposed. However, such approaches implement naive topology-based inference and do...

متن کامل

Supervised prediction of drug-target interactions by ensemble learning

Drug-target interaction (DTI) provides novel insights about the genomic drug discovery. The wet experiments of identifying DTIs are time-consuming and costly. Recently, the increase of available data provides the opportunity to the development of computational methods. Although many computational methods have been proposed (such as classification-based methods, graph-based methods and network-b...

متن کامل

Supervised prediction of drug–target interactions using bipartite local models

MOTIVATION In silico prediction of drug-target interactions from heterogeneous biological data is critical in the search for drugs for known diseases. This problem is currently being attacked from many different points of view, a strong indication of its current importance. Precisely, being able to predict new drug-target interactions with both high precision and accuracy is the holy grail, a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Pharmacology

سال: 2018

ISSN: 1663-9812

DOI: 10.3389/fphar.2018.01134