Necessary and sufficient condition for eventual decay of oscillations in general functional equations with delays

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary and sufficient condition for hydrostatic equilibrium in general relativity

We present explicit examples to show that the ‘compatibility criterion’ [recently obtained by us towards providing equilibrium configurations compatible with the structure of general relativity] which states that: for a given value of σ[≡ (P0/E0) ≡ the ratio of central pressure to central energy-density], the compactness ratio u[≡ (M/R), whereM is the total mass andR is the radius of the config...

متن کامل

A Necessary and Sufficient Condition for Transcendency

As has been known for many years (see, e.g., K. Mahler, /. Reine Angew. Math., v. 166, 1932, pp. 118-150), a real or complex number f is transcendental if and only if the following condition is satisfied. To every positive number co there exists a positive integer n and an infinite sequence of distinct polynomials {p,(z)} = {pr + pr z + • • • + p z } at most of 0 1 n degree n with integral coef...

متن کامل

A Necessary and Sufficient Condition for Peace∗

This paper examines the possibility for two contestants to agree on a peace settlement thereby avoiding a contest, in which each would exert a costly effort given the posterior distributions inferred from the negotiation. I find a necessary and sufficient condition of the prior distributions for there to exist a negotiation mechanism that admits a peace-ensuring perfect Bayesian equilibrium. Th...

متن کامل

Necessary and sufficient conditions for oscillations of first order neutral delay difference equations with constant coefficients

In this paper, we establish the necessary and sufficient conditions for oscillation of the following first order neutral delay difference equation ∆[x(n) + px(n− τ)] + qx(n− σ) = 0, n ≥ n0, (∗) where τ and σ are positive integers, p 6= 0 is a real number and q is a positive real number. We proved that every solution of (∗) oscillates if and only if its characteristic equation (λ− 1)(1 + pλ−τ ) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 1980

ISSN: 0018-2079

DOI: 10.32917/hmj/1206134574