Nanoscale heat flux between nanoporous materials
نویسندگان
چکیده
منابع مشابه
Nanoscale heat flux between nanoporous materials.
By combining stochastic electrodynamics and the Maxwell-Garnett description for effective media we study the radiative heat transfer between two nanoporous materials. We show that the heat flux can be significantly enhanced by air inclusions, which we explain by: (a) the presence of additional surface waves that give rise to supplementary channels for heat transfer throughout the gap, (b) an in...
متن کاملUltrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.
Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm^2. The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm2...
متن کاملHeat flux manipulation with engineered thermal materials.
Utilizing a multilayered composite approach, we have designed and constructed a new class of artificial materials for thermal conduction. We show that an engineered material can be utilized to control the diffusive heat flow in ways inconceivable with naturally occurring materials. By shielding, concentrating, and inverting heat current, we experimentally demonstrate the unique potential and th...
متن کاملNanoporous materials.
The current review article attempts to cover the field of nanoporous materials, thereby materials with voids of the order of 1 nm to 100 nm or even larger. Concepts, that have an effect on a more general basis, are introduced and the common features among the different classes of nanoporous materials are demonstrated enabling understanding their formation and stability. It is seen that the most...
متن کاملUnderstanding diffusion in nanoporous materials.
Can we predict diffusion behavior of molecules in confinement by looking at the match between the molecule and the structure of the confinement? This question has proven difficult to answer for many decades. As a case study, we use methane and a simple model of ellipsoids to arrive at a molecular picture that allows us to make a classification of pore topologies and to explain their diffusion b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2011
ISSN: 1094-4087
DOI: 10.1364/oe.19.0a1088