Multivariate Jackson Inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Young’s inequality for multivariate functions

This paper presents a generalization of Young’s inequality to the real functions of several variables. Moreover, the relevant facts about Young’s inequality and its extension including improved proofs are provided in a review. The basic results are initiated by applying the integral method to a strictly increasing continuous function of one variable. c ©2016 All rights reserved.

متن کامل

A Sharp Jackson Inequality for Best Trigonometric Approximation

The paper presents a sharp Jackson inequality and a corresponding inverse one for best trigonometric approximation in terms of moduli of smoothness that are equivalent to zero on the trigonometric polynomials up to a certain degree. Sharp relations between such moduli of different order are also considered.

متن کامل

A Multivariate Generalization of Hoeffding’s Inequality

In the study of U -statistics we need a multivariate version of this result. The goal of this paper is to present such an inequality. To formulate it first we have to introduce some notations. Let us fix a positive integer k and some real numbers a(j1, . . . , jk) for all sets of arguments {j1, . . . , jk} such that 1 ≤ jl ≤ n, 1 ≤ l ≤ k, and jl 6= jl′ if l 6= l, in such a way that the numbers ...

متن کامل

An Inequality About Factors of Multivariate Polynomials

We give a bound on the Euclidean norm of factors of multivariate polynomials. The result is a simple extension of the bivariate case given by Coron, which is an extension of the univariate case given by Mignotte. We use the result to correct a proof by Ernst et al., regarding computing small integer solutions of certain trivariate polynomials.

متن کامل

The Olovyanishnikov Inequality for Multivariate Functions

Let G be the real line R, space R, the negative half-line R− or the octant R− := {(x1, · · · , xm) ∈ R : x1 ≤ 0, · · · , xm ≤ 0}. Let Lp = Lp(G), 1 ≤ p ≤ ∞, be the space of functions x : G → R, integrable in the power p on G (essentially bounded when p =∞), with usual norm. In the case when G = R or G = R−, by Lp = Lp(G), r ∈ N, we will denote the space of functions x : G → R, that have locally...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2009

ISSN: 0377-0427

DOI: 10.1016/j.cam.2009.02.095