Multitracer Guided PET Image Reconstruction
نویسندگان
چکیده
منابع مشابه
PET Image Reconstruction
Positron emission tomography (PET) scanners collect measurements of a patient’s in vivo radiotracer distribution. These measurements are reconstructed into cross-sectional images. Tomographic image reconstruction forms images of functional information in nuclear medicine applications and the same principles can be applied to modalities such as X-ray computed tomography. This chapter provides a ...
متن کاملBayesian PET image reconstruction
We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realist...
متن کاملAdvances in PET Image Reconstruction.
Until recently, the most widely used methods for image reconstruction were direct analytic techniques. Iterative techniques, although computationally much more intensive, produce improved images (principally arising from more accurate modeling of the acquired projection data), enabling these techniques to replace analytic techniques not only in research settings but also in the clinic. This art...
متن کاملTracer Kinetics Guided Dynamic PET Reconstruction
Dynamic PET reconstruction is a challenging issue due to the spatio-temporal nature and the complexity of the data. Conventional frame-by-frame approaches fail to explore the temporal information of dynamic PET data, and may lead to inaccurate results due to the low SNR of data. Due to the ill-conditioning of image reconstruction, proper prior knowledge should be incorporated to constrain the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Radiation and Plasma Medical Sciences
سال: 2018
ISSN: 2469-7311,2469-7303
DOI: 10.1109/trpms.2018.2856581