Multiscale simulation of heat transfer in a rarefied gas
نویسندگان
چکیده
منابع مشابه
A Multiscale Particle Approach for Continuum/Rarefied Flow Simulation
A hybrid particle scheme is presented for the simulation of compressible gas flows involving both continuum regions and rarefied regions with strong translational nonequilibrium. The direct simulation Monte Carlo (DSMC) method is applied in rarefied regions, while remaining portions of the flowfield are simulated using a DSMC-based low diffusion particle method for inviscid flow simulation. The...
متن کاملGas-kinetic scheme for rarefied flow simulation
For increasingly rarefied flowfields, the predictions from continuum formulation, such as the Navier–Stokes equations lose accuracy. These inaccuracies are attributed primarily to the linear approximations of the stress and heat flux terms in the Navier– Stokes equations. The inclusion of higher order terms, such as Burnett, or high-order moment equations, could improve the predictive capabilit...
متن کاملHeat Transfer on a Hypersonic Sphere with Diffuse Rarefied-gas Injection
The interaction of a diffusing outgas flow from a sphere nose opposing a hypersonic free stream is studied numerically by the direct simulation MonteCarlo technique under the transitional rarefied-gas-flow regime conditions at Knudsen numbers from 0.016 to 1.5 and blowing factors from 0.15 to 1.5. Strong influences of the blowing factor (the ratio of outgas mass flux to upstream mass flux) and ...
متن کاملSimulation of Convective Heat Transfer of a Nanofluid in a Circular Cross-section
The CFD simulation of heat transfer characteristics of a nanofluid ina circular tube under convective heat transferwas considered using the fluentsoftware (version 6.3.26) in the laminar flow. Al2O3nano- particles in water with concentrations of 0.5, 1.0, 1.5, 2 and 2.5% were studied in the simulation. All thermo-physical properties of nanofluids were temperature independent. It was concluded t...
متن کاملMesoscopic Simulation of Rarefied Gas Flow in Porous Media
The accurate description of flow in nano-scale pores or channels is very important for the reliable design of materials and processes in the areas of MEMS, mesoporous media, and vacuum technologies. Use of classical flow equations fails in this regime since the continuum assumption is not valid. This is due to the fact that the mean free path is comparable to the characteristic dimensions of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Heat and Fluid Flow
سال: 2014
ISSN: 0142-727X
DOI: 10.1016/j.ijheatfluidflow.2014.06.003