Multiple solutions for asymptotically linear elliptic equations with sign-changing weight
نویسندگان
چکیده
منابع مشابه
Multiple Positive Solutions for Semilinear Elliptic Equations with Sign - Changing Weight Functions
and Applied Analysis 3 In order to describe our main result, we need to define Λ0 ( 2 − q ( p − q‖a‖L∞ ) 2−q / p−2 ( p − 2 ( p − q)‖b ‖Lq∗ ) S p 2−q /2 p−2 q/2 p > 0, 1.3 where ‖a‖L∞ supx∈RNa x , ‖b ‖Lq∗ ∫ RN |b x |qdx 1/q∗ and Sp is the best Sobolev constant for the imbedding of H1 R into L R . Theorem 1.1. Assume that a1 , b1 b2 hold. If λ ∈ 0, q/2 Λ0 , Ea,λb admits at least two positive solu...
متن کاملBifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملMultiple Positive Solutions for Singular Elliptic Equations with Concave-Convex Nonlinearities and Sign-Changing Weights
Recommended by Pavel Drabek We study existence and multiplicity of positive solutions for the following Dirichlet equations: −Δu − μ/|x| 2 u λfx|u| q−2 u gx|u| 2 * −2 u in Ω, u 0 on ∂Ω, where 0 ∈ Ω ⊂ R N N ≥ 3 is a bounded domain with smooth boundary ∂Ω, λ > 0, 0 ≤ μ < μ N − 2 2 /4, 2 * 2N/N − 2, 1 ≤ q < 2, and f, g are continuous functions on Ω which are somewhere positive but which may change...
متن کاملMultiple Solutions for Semilinear Elliptic Equations with Sign-changing Potential and Nonlinearity
In this article, we study the multiplicity of solutions for the semilinear elliptic equation −∆u + a(x)u = f(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω ⊂ RN (N ≥ 3), the potential a(x) satisfies suitable integrability conditions, and the primitive of the nonlinearity f is of super-quadratic growth near infinity and is allowed to change sign. Our super-quadratic conditions are weaker the usual super-q...
متن کاملMultiple Solutions for Biharmonic Equations with Asymptotically Linear Nonlinearities
Ruichang Pei1, 2 1 Center for Nonlinear Studies, Northwest University, Xi’an 710069, China 2 Department of Mathematics, Tianshui Normal University, Tianshui 741001, China Correspondence should be addressed to Ruichang Pei, [email protected] Received 26 February 2010; Revised 2 April 2010; Accepted 22 April 2010 Academic Editor: Kanishka Perera Copyright q 2010 Ruichang Pei. This is an open access ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 2015
ISSN: 2156-2261
DOI: 10.1215/21562261-3089082