Multiple Imputation of Covariates by Substantive-model Compatible Fully Conditional Specification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple imputation of covariates by substantive model compatible fully conditional specification

Multiple imputation (MI) is a practical, principled approach to handling missing data. When used to impute missing values in covariates of regression models, imputation models may be mis-specified if they are not compatible with the substantive model of interest for the outcome. In this article we introduce the smcfcs command, which imputes covariates by substantive model compatible fully condi...

متن کامل

Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model

Missing covariate data commonly occur in epidemiological and clinical research, and are often dealt with using multiple imputation. Imputation of partially observed covariates is complicated if the substantive model is non-linear (e.g. Cox proportional hazards model), or contains non-linear (e.g. squared) or interaction terms, and standard software implementations of multiple imputation may imp...

متن کامل

Fully Conditional Specification in Multivariate Imputation

The use of the Gibbs sampler with fully conditionally specified models, where the distribution of each variable given the other variables is the starting point, has become a popular method to create imputations in incomplete multivariate data. The theoretical weakness of this approach is that the specified conditional densities can be incompatible, and therefore the stationary distribution to w...

متن کامل

Relative efficiency of joint-model and full-conditional-specification multiple imputation when conditional models are compatible: The general location model.

Estimating the parameters of a regression model of interest is complicated by missing data on the variables in that model. Multiple imputation is commonly used to handle these missing data. Joint model multiple imputation and full-conditional specification multiple imputation are known to yield imputed data with the same asymptotic distribution when the conditional models of full-conditional sp...

متن کامل

Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation.

Statistical analysis in epidemiologic studies is often hindered by missing data, and multiple imputation is increasingly being used to handle this problem. In a simulation study, the authors compared 2 methods for imputation that are widely available in standard software: fully conditional specification (FCS) or "chained equations" and multivariate normal imputation (MVNI). The authors created ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Stata Journal: Promoting communications on statistics and Stata

سال: 2015

ISSN: 1536-867X,1536-8734

DOI: 10.1177/1536867x1501500206