Multiple degree elevation and constrained multiple degree reduction for DP curves and surfaces
نویسندگان
چکیده
منابع مشابه
Multiple Degree Reduction of Interval DP Curves
O. Ismail, Senior Member, IEEE Abstract— Fixed DP curve is a recent representation of the polynomial curves, proposed by Delgado and Pena in 2003. They introduced a new curve representation with linear computational complexity. An algorithmic approach to degree reduction of interval DP curve is presented in this paper. The four fixed Kharitonov's polynomials (four fixed DP curves) associated wi...
متن کاملOptimal Constrained Explicit Multi-degree Reduction Approximation of DP Curves ★
DP curves, which possess the shape-preserving property and linear complexity evaluation algorithm, occupy a significantly important place in computer aided geometric design. Thus to do the research on the DP curves algorithms has a positive meaning. Aphirukmatakun et al. presented a degree elevation algorithm of DP curves based on the transformation between the DP basis and power basis. At the ...
متن کاملDegree Elevation and Reduction of Periodic Surfaces
Recently we developed a periodic surface model to assist the construction of nano structures parametrically for computer-aided nano-design. In this paper, we study the properties of periodic surfaces for degree elevation and reduction. Degree elevation approaches are developed to incrementally increase shape complexities, including native, variational, and boundary constrained elevations. A gen...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree elevation for p-Bézier curves
A class of single-valued curves in polar coordinates, which we refer to as p-B ezier curve, has been recently presented by SS anchez-Reyes and independently discovered by P.de Casteljau. From their deenition and expression in terms of the Fourier basis it is obvious that every curve of degree n can be expressed as a curve of degree kn, for any natural value k. In this paper, we provide a formul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2011
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2010.09.052