Multiobjective Fractional Symmetric Duality in Mathematical Programming with (C,Gf)-Invexity Assumptions
نویسندگان
چکیده
منابع مشابه
Symmetric duality for multiobjective fractional variational problems with generalized invexity
The concept of symmetric duality for multiobjective fractional problems has been extended to the class of multiobjective variational problems. Weak, strong and converse duality theorems are proved under generalized invexity assumptions. A close relationship between these problems and multiobjective fractional symmetric dual problems is also presented. 2005 Elsevier Inc. All rights reserved.
متن کاملMultiobjective Mixed Symmetric Duality with Invexity
The usual duality results are established for mixed symmetric multiobjective dual programs without nonnegativity constraints using the notion of invexity/ generalized invexity which has allowed weakening various types of convexity/ generalized convexity assumptions. This mixed symmetric dual formulation unifies two existing symmetric dual formulations in the literature.
متن کاملNonsmooth Multiobjective Fractional Programming with Generalized Invexity
In this paper, we consider nonsmooth multiobjective fractional programming problems involving locally Lipschitz functions. We introduce the property of generalized invexity for fractional function. We present necessary optimality conditions, sufficient optimality conditions and duality relations for nonsmooth multiobjective fractional programming problems, which is for a weakly efficient soluti...
متن کاملDuality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کاملOptimality Conditions and Duality in Multiobjective Programming with Invexity*
( , ) ρ Φ − invexity has recently been introduced with the intent of generalizing invex functions in mathematical programming. Using such conditions we obtain new sufficiency results for optimality in multiobjective programming and extend some classical duality properties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2019
ISSN: 2075-1680
DOI: 10.3390/axioms8030097