Multimodal Registration of Fish and Nanosims Images Using Convolutional Neural Network Models

نویسندگان

چکیده

Nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence in situ hybridization (FISH) microscopy provide high-resolution, multimodal image representations of the identity cell activity respectively targeted microbial communities microbiological research. Despite its importance to microbiologists, registration FISH nanoSIMS images is challenging given morphological distortion background noise both images. In this study, we use convolutional neural networks (CNNs) for multiscale feature extraction, shape context computation minimum transformation cost matching thin-plate spline (TPS) model Registration accuracy was quantitatively assessed against manually registered images, at both, pixel structural levels using standard metrics. Although all six tested CNN models performed well, ResNet18 observed outperform VGG16, VGG19, GoogLeNet ShuffleNet ResNet101 based on most This study demonstrates utility CNNs with significant morphology distortion. We also show aggregate shape, preserved by binarization, be a robust registering microbiology-related

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

Convolutional Neural Network Language Models

Convolutional Neural Networks (CNNs) have shown to yield very strong results in several Computer Vision tasks. Their application to language has received much less attention, and it has mainly focused on static classification tasks, such as sentence classification for Sentiment Analysis or relation extraction. In this work, we study the application of CNNs to language modeling, a dynamic, seque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2022

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4075457