Multilinear differential operators on modular forms
نویسندگان
چکیده
منابع مشابه
Multilinear Operators on Siegel Modular Forms of Genus
Classically, there are many interesting connections between differential operators and the theory of elliptic modular forms and many interesting results have been explored. In particular, it has been known for some time how to obtain an elliptic modular form from the derivatives ofN elliptic modular forms, which has already been studied in detail by R. Rankin in [9] and [10]. When N = 2, as a s...
متن کاملDifferential operators on Hilbert modular forms
We investigate differential operators and their compatibility with subgroups of SL2(R) n. In particular, we construct Rankin–Cohen brackets for Hilbert modular forms, and more generally, multilinear differential operators on the space of Hilbert modular forms. As an application, we explicitly determine the Rankin– Cohen bracket of a Hilbert–Eisenstein series and an arbitrary Hilbert modular for...
متن کاملModular forms and differential operators
A~tract, In 1956, Rankin described which polynomials in the derivatives of modular forms are again modular forms, and in 1977, H Cohen defined for each n i> 0 a bilinear operation which assigns to two modular forms f and g of weight k and l a modular form If, g], of weight k + l + 2n. In the present paper we study these "Rankin-Cohen brackets" from t w o points of view. On the one hand we give ...
متن کاملOperators on Hilbert - Siegel Modular Forms
We define Hilbert-Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert-Siegel forms (i.e. with arbitrary Siegel d...
متن کاملHecke Operators on Hilbert–siegel Modular Forms
We define Hilbert–Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert–Siegel forms (i.e. with arbitrary Siegel d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2003
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-03-07324-6