Multifusion categories and finite semisimple 2-categories
نویسندگان
چکیده
We give a 3-universal property for the Karoubi envelope of 2-category. Using this, we show that 3-categories finite semisimple 2-categories (as introduced in arXiv:1812.11933) and multifusion categories are equivalent.
منابع مشابه
Finitely semisimple spherical categories and modular categories are self - dual
We show that every essentially small finitely semisimple k-linear additive spherical category in which k = End(1) is a field, is equivalent to its dual over the long canonical forgetful functor. This includes the special case of modular categories. In order to prove this result, we show that the universal coend of the spherical category with respect to the long forgetful functor is self-dual as...
متن کاملA Canonical Tannaka Duality for Finite Semisimple Tensor Categories
For each finite semisimple tensor category, we associate a quantum group (face algebra) whose comodule category is equivalent to the original one, in a simple natural manner. To do this, we also give a generalization of the Tannaka-Krein duality, which assigns a face algebra for each tensor category equipped with an embedding into a certain kind of bimodule category.
متن کاملA construction of semisimple tensor categories
Let A be an abelian category such that every object has only finitely many subobjects. From A we construct a semisimple tensor category T . We show that T interpolates the categories Rep(Aut(p), K) where p runs through certain projective pro-objects of A. This extends a construction of Deligne for symmetric groups.
متن کاملFinite Tensor Categories
We start the general structure theory of not necessarily semisimple finite tensor categories, generalizing the results in the semisimple case (i. e. for fusion categories), obtained recently in our joint work with D. Nikshych. In particular, we generalize to the categorical setting the Hopf and quasi-Hopf algebra freeness theorems due to Nichols–Zoeller and Schauenburg, respectively. We also gi...
متن کاملLocally finite triangulated categories ✩
A k-linear triangulated category A is called locally finite provided ∑ X∈indA dimk HomA(X,Y ) < ∞ for any indecomposable object Y in A. It has Auslander–Reiten triangles. In this paper, we show that if a (connected) triangulated category has Auslander–Reiten triangles and contains loops, then its Auslander–Reiten quiver is of the form L̂n: · · · · ̂ n n− 1 2 1 By using this, we prove that the Aus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2022
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2022.107029