Multiferroics: Different ways to combine magnetism and ferroelectricity
نویسندگان
چکیده
منابع مشابه
Thinking in Different Ways to Combine Fusion with Fission
The common goal of CTR, but in particular of ICF, is low yield-high gain. Fission triggered large TN explosive devices meet the second but not he first of these conditions. These devices depend on the rare isotopes U235, Pu239, or U233, but for them the fusion energy output greatly exceeds the output from fission, limiting the fallout. In thinking about different ways to combine fusion with fis...
متن کاملRare earth magnetism and ferroelectricity in RMnO3
Magnetic rare earths R have been proven to have a significant effect on the multiferroic properties of the orthorhombic manganites RMnO3. A re-examination of previous results from synchrotron based x-ray scattering experiments suggests that symmetric exchange striction between neighboring R and Mn ions may account for the enhancement of the ferroelectric polarization in DyMnO3 as well as the ma...
متن کاملFerroelectricity Induced by Incommensurate Magnetism (Invited)
Ferroelectricity has been found to occur in several insulating systems, such as TbMnO3 and Ni3V2O8 which have more than one phase with incommensurately modulated long-range magnetic order. Here we give a phenomenological model which relates the symmetries of the magnetic structure as obtained from neutron diffraction to the development and orientation of a spontaneous ferroelectric moment induc...
متن کاملAn organic approach for nanostructured multiferroics.
Multiferroics are materials that simultaneously exhibit more than one ferroic order parameters, such as ferroelectricity, ferroelasticity and ferromagnetism. Recently, multiferroicity has received a significant revival of interest due to the colossal magnetoelectric coupling effect for the development of nano-ferronics. In this mini-review, we focus on a recent study of ferroelectricity, magnet...
متن کاملFerroelectricity driven magnetism at domain walls in LaAlO3/PbTiO3 superlattices
Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclusion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Magnetism and Magnetic Materials
سال: 2006
ISSN: 0304-8853
DOI: 10.1016/j.jmmm.2006.01.238