Multichannel Seismic Deconvolution Using Markov–Bernoulli Random-Field Modeling
نویسندگان
چکیده
منابع مشابه
Multichannel Seismic Deconvolution Using Markov-Bernoulli Random-Field Modeling
In this paper, we present an algorithm for multichannel blind deconvolution of seismic signals, which exploits lateral continuity of Earth layers based on Markov–Bernoulli randomfield modeling. The reflectivity model accounts for layer discontinuities resulting from splitting, merging, starting, or terminating layers within the region of interest. We define a set of reflectivity states and lega...
متن کاملMultichannel blind seismic deconvolution using dynamic programming
In this paper, we present an algorithm for multichannel blind deconvolution of seismic signals, which exploits lateral continuity of earth layers by dynamic programming approach. We assume that reflectors in consecutive channels, related to distinct layers, form continuous paths across channels. We introduce a quality measure for evaluating the quality of a continuous path, and iteratively appl...
متن کاملMultichannel Blind Deconvolution of Seismic Signals
A new algorithm for simultaneous wavelet estimation and deconvolution of seismic reflection signals is given. To remove the inherent ambiguity in this blind deconvolution problem, we introduce relevant a priori information. Our major assumption is sparseness of the reflectivity, which corresponds to a layered earth model. This allows non-minimum phase wavelets to be recovered reliably and close...
متن کاملDynamic Programming for Multichannel Blind Seismic Deconvolution
We present an algorithm for multichannel blind deconvolution of seismic signals, which exploits lateral continuity of earth layers by dynamic programming approach. We assume that reflectors in consecutive channels, related to distinct layers, form continuous paths across channels. We introduce a quality measure for evaluating the quality of a continuous path, and iteratively apply dynamic progr...
متن کاملMultichannel Semi-blind Sparse Deconvolution of Seismic Signals
Seismic deconvolution is associated with recovering the reflectivity series from a seismic signal when the wavelet is known. In this paper, we address the problem of multichannel semiblind seismic deconvolution, where the wavelet is unknown and there is some uncertainty in the assumed wavelet. We present a novel, two-stage iterative algorithm that recovers both the reflectivity and the wavelet....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2009
ISSN: 0196-2892,1558-0644
DOI: 10.1109/tgrs.2008.2012348