Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants
نویسندگان
چکیده
منابع مشابه
Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants
Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under di...
متن کاملA New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades
As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage pa...
متن کاملMultiaxial high-cycle fatigue criterion and life prediction for metals
A new high-cycle fatigue criterion based on the critical plane approach is proposed in this paper. Unlike most of the other multiaxial fatigue criteria based on the critical plane approach, the critical plane is directly correlated with the fatigue fracture plane. The proposed criterion has a wide range of applicability from very ductile metals to extremely brittle metals. Mean stress effect is...
متن کاملPrediction of Fatigue Life in Notched Specimens Using Multiaxial Fatigue Criteria
In this research, the effects of notch shape on the fatigue strength of 2024-T3 aluminum alloy notched specimens have been studied using experimental and multiaxial fatigue analysis. For this purpose, four set of specimens with different notch shape were prepared and then fatigue tests were carried out at various cyclic longitudinal load levels. Load controlled fatigue tests of mentioned specim...
متن کاملAn equivalent strain/CoffineManson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices
Medical devices, particularly endovascular stents, manufactured from superelastic Nitinol, a nearequiatomic alloy of Ni and Ti, are subjected to complex mixed-mode loading conditions in vivo, including axial tension and compression, radial compression, pulsatile, bending and torsion. Fatigue lifetime prediction methodologies for Nitinol, however, are invariably based on uniaxial loading and thu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials
سال: 2017
ISSN: 1996-1944
DOI: 10.3390/ma10080923