Multi-view SVM Classification with Feature Selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Subset Selection for Multi-class SVM Based Image Classification

Multi-class image classification can benefit much from feature subset selection. This paper extends an error bound of binary SVMs to a feature subset selection criterion for the multi-class SVMs. By minimizing this criterion, the scale factors assigned to each feature in a kernel function are optimized to identify the important features. This minimization problem can be efficiently solved by gr...

متن کامل

Saddle Point Feature Selection in Svm Classification

SVM wrapper feature selection method for the classification problem, introduced in our previous work [1], is analyzed. The method based on modification of the standard SVM criterion by adding to the basic objective function a third term, which directly penalizes a chosen set of variables. The criterion divides the set of all variables into three subsets: deleted, selected and weighted features....

متن کامل

Weighted Multi-view Clustering with Feature Selection

In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies main...

متن کامل

String Kernels with Feature Selection for SVM Protein Classification

We introduce a general framework for string kernels. This framework can produce various types of kernels, including a number of existing kernels, to be used with support vector machines (SVMs). In this framework, we can select the informative subsequences to reduce the dimensionality of the feature space. We can model the mutations in biological sequences. Finally, we combine contributions of s...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2019

ISSN: 1877-0509

DOI: 10.1016/j.procs.2019.12.004