Multi-task feature selection in microarray data by binary integer programming
نویسندگان
چکیده
منابع مشابه
Multi-task feature selection in microarray data by binary integer programming
A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational e...
متن کاملMulti-task Feature Selection
We address joint feature selection across a group of classification or regression tasks. In many multi-task learning scenarios, different but related tasks share a large proportion of relevant features. We propose a novel type of joint regularization for the parameters of support vector machines in order to couple feature selection across tasks. Intuitively, we extend the `1 regularization for ...
متن کاملCancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm
Cancer investigations in microarray data play a major role in cancer analysis and the treatment. Cancer microarray data consists of complex gene expressed patterns of cancer. In this article, a Multi-Objective Binary Particle Swarm Optimization (MOBPSO) algorithm is proposed for analyzing cancer gene expression data. Due to its high dimensionality, a fast heuristic based pre-processing techniqu...
متن کاملDiscriminative Multi-Task Feature Selection
The effectiveness of supervised feature selection degrades in low training data scenarios. We propose to alleviate this problem by augmenting per-task feature selection with joint feature selection over multiple tasks. Our algorithm builds on the assumption that different tasks have shared structure which could be utilized to cope with data sparsity. The proposed trace-ratio based model not onl...
متن کاملProbabilistic Multi-Task Feature Selection
Recently, some variants of the l1 norm, particularly matrix norms such as the l1,2 and l1,∞ norms, have been widely used in multi-task learning, compressed sensing and other related areas to enforce sparsity via joint regularization. In this paper, we unify the l1,2 and l1,∞ norms by considering a family of l1,q norms for 1 < q ≤ ∞ and study the problem of determining the most appropriate spars...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Proceedings
سال: 2013
ISSN: 1753-6561
DOI: 10.1186/1753-6561-7-s7-s5