Multi-stage splitting integrators for sampling with modified Hamiltonian Monte Carlo methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Monte Carlo with Importance Sampling Method

Monte Carlo simulation methods apply a random sampling and modifications can be made of this method is by using variance reduction techniques (VRT). VRT objective is to reduce the variance due to Monte Carlo methods become more accurate with a variance approaching zero and the number of samples approaches infinity, which is not practical in the real situation (Chen, 2004). These techniques are ...

متن کامل

Hamiltonian Monte Carlo sampling for Wishart distributions with eigenvalue constraints

Sampling from constrained target spaces for Bayesian inference is a non-trivial problem. A recent development has been the use of Hamiltonian Monte Carlo in combination with particle re ection, see [Pakman and Paninski, 2014]. However, Hamiltonian Monte Carlo is sensitive to several hyper parameters, that need to be tuned, to ensure an ecient sampler. For this purpose, [Wang et al., 2013] sugge...

متن کامل

Markov Chain Monte Carlo posterior sampling with the Hamiltonian method

The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In...

متن کامل

Appendix for Towards Unifying Hamiltonian Monte Carlo and Slice Sampling

The MG-SS for 0 < a < 1, a = 1 and a > 1 are illustrated in Figure 4. When 0 < a < 1, the conditional distribution p(yt|xt) is skewed towards the current unnormalized density value f(xt). The conditional draw of p(xt+1|yt) encourages taking samples with smaller density value (small moves), within the domain of the slice interval X. On the other hand, when a > 1, draws of yt tend to take smaller...

متن کامل

Robust Monte Carlo Sampling using Riemannian Nosé-Poincaré Hamiltonian Dynamics

We present a Monte Carlo sampler using a modified Nosé-Poincaré Hamiltonian along with Riemannian preconditioning. Hamiltonian Monte Carlo samplers allow better exploration of the state space as opposed to random walk-based methods, but, from a molecular dynamics perspective, may not necessarily provide samples from the canonical ensemble. Nosé-Hoover samplers rectify that shortcoming, but the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2018

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2018.07.023