Multi-Period Liability Clearing via Convex Optimal Control
نویسندگان
چکیده
منابع مشابه
Multi-Period Trading via Convex Optimization
We consider a basic model of multi-period trading, which can be used to evaluate the performance of a trading strategy. We describe a framework for single-period optimization, where the trades in each period are found by solving a convex optimization problem that trades off expected return, risk, transaction cost and holding cost such as the borrowing cost for shorting assets. We then describe ...
متن کاملCapacity Control via Convex Optimization
Capacity control is a very important problem in civil infrastructure operation, but no general model exists for it. In this project we • Formulate the real-time capacity control problem of a single facility • Perform dynamic programming to search for the optimal solution • Implement piecewise linear regression to update the objective function, and SCP to update the policy • Extend the model to ...
متن کاملConvex Clustering via Optimal Mass Transport
We consider approximating distributions within the framework of optimal mass transport and specialize to the problem of clustering data sets. Distances between distributions are measured in the Wasserstein metric. The main problem we consider is that of approximating sample distributions by ones with sparse support. This provides a new viewpoint to clustering. We propose different relaxations o...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملRobust multi-echelon multi-period inventory control
We consider the problem of minimizing the overall cost of a supply chain, over a possibility long horizon, under demand uncertainly which is known only crudely. Under such circumstances, the method of choice is Robust Optimization, in particular the Affinely Adjustable Robust Counterpart (AARC) method which leads to tractable deterministic optimization problems. The latter is due to a recent re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2020
ISSN: 1556-5068
DOI: 10.2139/ssrn.3604618