Multi-Objective Genetic Algorithm for Pseudoknotted RNA Sequence Design
نویسندگان
چکیده
منابع مشابه
Multi-Objective Genetic Algorithm for Pseudoknotted RNA Sequence Design
RNA inverse folding is a computational technology for designing RNA sequences which fold into a user-specified secondary structure. Although pseudoknots are functionally important motifs in RNA structures, less reports concerning the inverse folding of pseudoknotted RNAs have been done compared to those for pseudoknot-free RNA design. In this paper, we present a new version of our multi-objecti...
متن کاملEntropy-based multi-objective genetic algorithm for design optimization
Obtaining a fullest possible representation of solutions to a multiobjective optimization problem has been a major concern in Multi-Objective Genetic Algorithms (MOGAs). This is because a MOGA, due to its very nature, can only produce a discrete representation of Pareto solutions to a multiobjective optimization problem that usually tend to group into clusters. This paper presents a new MOGA, o...
متن کاملMulti-objective genetic algorithm
Real world problems often present multiple, frequently conflicting, objectives. The research for optimal solutions of multi-objective problems can be achieved through means of genetic algorithms, which are inspired by the natural process of evolution: an initial population of solutions is randomly generated, then pairs of solutions are selected and combined in order to create new solutions slig...
متن کاملMulti-objective hybrid genetic algorithm for bicriteria network design problem
This paper considers the Bicriteria Network Design Problem (bNDP) with the two conflicting objectives of minimizing cost and maximizing flow. Network design problems where even one flow measure be maximized, are often NP-hard problems. But, in real-life applications, it is often the case that the network to be built is required to optimize multi-criteria simultaneously. Thus the calculation of ...
متن کاملFast Algorithm for Pseudoknotted RNA Structure Prediction
Pseudoknotted RNA structure prediction is an important problem in bioinformatics. Existing polynomial time algorithms can handle only limited types of pseudoknots, or have too high time or space to predict long sequences. In this paper a heuristic algorithm is presented to maximize stems and predict arbitrary pseudoknots with O(n) time and O(n) space for a large scale of 5000 bases. Compared wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Genetics
سال: 2012
ISSN: 1664-8021
DOI: 10.3389/fgene.2012.00036